
J .  Fluid Mech. (1973), vol. 60, part 1, pp. 63-79 

Printed in &eat Britain 
63 

The decay of perturbations in an electrically conducting 
and thermally radiating gas 

By M. SRINIVASA SARMA AND L. V. K. V. SARMA 
Department of Mathematics, Indian Institute of Technology, Madras 

(Received 23 February 1973) 

The decay of perturbations in an infinite, thermally radiating gas of perfect 
electrical conductivity in the presence of magnetic field is studied. Complete 
solutions for the decay of initial sinusoidal perturbations in the temperature, gas 
velocity and pressure are determined. The sinusoidal perturbations are super- 
posed to yield solutions for the decay of initial ‘step’ temperature profiles con- 
sisting of a constant initial temperature perturbation inside a finite planar region, 
with zero temperature perturbation outside. For a broad range of small and 
intermediate Boltzmann numbers the cooling proceeds in time from being a 
constant-density cooling process to being a constant-pressure cooling process. 
The magnetic field causes slower temperature decay with time and makes the 
temperature perturbations tend to attain constant-pressure cooling values. It 
quickens the decay of velocity and pressure perturbations and thus the transition 
from a constant-density to a constant-pressure cooling process is hastened. This 
transition is produced by the magneto-acoustic waves generated near the profile 
edges by the radiative cooling. 

1. Introduction 
On account of the high ambient temperatures that prevail in many phenomena, 

it is of interest to consider the effects of thermal radiation in gasdynamics. The 
decay of perturbations in a radiating gas has been the subject of a number of 
previous investigations. Consideration of a sinusoidal disturbance proportional 
to exp { i (wt  - kx)} leads to a characteristic equation which yields w roots for 
a fixed wavenumber k, or k roots for a fixed frequency w.  The analyses of the 
k roots of the characteristic equation (spatially damped case) were carried out 
by Prokof’ev (1957), Riazantsev (1959) and Vincenti & Baldwin (1962). In  addi- 
tion to solving the characteristic equation €or the k roots, Vincenti & Baldwin 
determined the relative amplitudes of the sinusoidal terms involving the k roots 
in order to form a complete solution for the problems of a semi-infinite radiating 
gas bounded by a wall undergoing sinusoidal oscillations in position and tempera- 
ture. Baldwin (1962) superposed spatially damped sinusoidal waves to calculate 
the effect of radiative transfer on the propagation of an acoustic disturbance 
produced by impulsive wall motion. This problem was also studied by Lick (1964) 
and Moore (1966). The disturbance produced by a step input of wall radiation was 
also discussed by Baldwin (1962), further work being carried out by Solan & 
Cohen (1966) and by Cogley & Vincenti (1969). 
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More recently, Olfe & DePlomb (1970) carried out the solution for the decay of 
sinusoidal perturbations in an infinite radiating gas by determining the relative 
amplitudes of the sinusoidal terms involving the w roots. They superposed 
temporally damped sinusoidal waves to calculate the decay of initial step tem- 
perature profiles consisting of c o n s h t  temperature perturbations inside kite 
planar, cylindrical and spherical regions, with zero initial temperature perturba- 
tions outside. 

Since at high temperatures a gas is likely to be ionized or partially ionized, 
electromagnetic effects may also be significant. Thus, the study of interaction of 
radiative and electromagnetic effects, such as may arise in problems of the solar 
photosphere, rocket re-entry, etc., is important. Helliwell & Nye (1969) studied 
the propagation of small amplitude waves, generated by small sinusoidal varia- 
tions in the position and temperature of the plane bounding wall, in B semi- 
infinite expanse of a radiating gas of perfect electrical conductivity. Nye (1970a) 
carried out further work by extending the work of Helliwell & Nye to a radiating 
gas of finite but high electrical conductivity. Nye (1970 b )  also studied the linear 
problem of a piston impulsively started and moving into an electrically conduc- 
ting, radiating gas, which is an extension of the work of Lick (1964) to the MGD 
regime. 

The present study is an extension of the work of Olfe & DePlomb (1970) to the 
magnetogasdynamic regime. In  $ 4  of this paper, we analyse the decay of sinu- 
soidal perturbations in an infinite, thermally radiating gas of perfect electrical 
conductivity in the presence of a magnetic field. We determine the relative 
amplitudes of the sinusoidal terms involving the u roots of the appropriate 
characteristic equation. In  $ 3  5 and 6, we consider the superposition of temporally 
damped sinusoidal waves to calculate the decay of initial step temperature 
profiles consisting of a constant temperature perturbation inside a finite planar 
region, with zero initial temperature perturbation outside. We carry out specific 
calculations taking the initial pressure and gas velocity perturbations to be zero. 
The pure sinusoidal case is a special self-similar case which depends on the para- 
meters r (the radiation parameter) and B2 (the magnetic interaction parameter). 
The superposed profiles are influenced by an additional parameter, namely the 
optical depth of the initial profile. 

For a broad range of small and intermediate values of the Boltzmann number, 
the cooling proceeds in time from being a constant-density process to being a 
constant-pressure process. The magnetic field causes slower temperature decay 
with time and makes the step temperature profiles tend to approach constant- 
pressure cooling values. In  contrast with slower temperature decay, the magnetic 
field causes faster decay of velocity and pressure perturbations. The magnetic 
field hastens the transition from constant-density cooling to constant-pressure 
cooling. This transition is produced by the magneto-acoustic waves generated 
near the profile edges by the radiative cooling. 
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2. Basic equations 
A system of Cartesian axes is chosen so that the magnetic field H* is parallel 

to the z axis. The electric field E* and the current J* are then parallel to the 
y axis. The fundamental equations governing the gas flow in the direction of the 
x axis may then be written down in conventional form using rationalized mks 
units. For simplicity the electrical conductivity of the gas is taken to be infinite 
and the effects of viscosity and thermal conductivity are neglected. The contribu- 
tions from radiative scattering, radiative pressure and radiative energy density 
are also neglected. The effects of radiation enter only in the energy equation, 
which is 

p* (g+v*g) = -p*- av* +Q, * . 
ax 

Here, e* is the specific internal energy of the gas, defined by the equations of state 

E* = RT*/(y- 1), p* = Rp*T*, (2) 

where p*, p*, T* and v* are the pressure, density, temperature and velocity 
respectively; R and y are the gas constant and the ratio of specific heats, respec- 
tively. The quantity Q: expresses the contribution to the heat transfer from the 
radiative flux. As is well known (see, for example, Kourganoff 1952) QT may 
be expressed in terms of certain integrals. In order to pursue the analysis an 
approximation must be made which removes these integrals (see Helliwell 
1966). We shall adopt here the Milne-Eddington approximation. Then Q: is 
given by 

where G* satisfies the equation 

QT = a*(G* - 4rB*), (3) 

(;az/az2-1)~* = - 4 r ~ * .  (4) 

Here, B* = 3T*4/r, 3 is the Stefan's constant, a* is the absorption coefficient and 
the co-ordinate x is defined by the differential relation d2 = a* dx. The rest of the 
equations of motion (with the electrical conductivity of the gas infinite) are 

a 
p* r;t* -++*- ax = --(p*+gpH*2), ax 

where p is the magnetic permeability. 

3. Linearized equations 
We now linearize the foregoing equations in the usual manner by setting 

v* = v, p* = po +p,  H* = Ho + H ,  G* = Go + G and so on. Here the quantities 
with suffix 0 denote values in the uniform state and the unstarred quantities are 

F L M  60 5 
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small. The constant Go = 43T; is a measure of the rate of emission of radiation 
energy from any point in the gas in the uniform state. On carrying out the process 
of linearization, the equations governing the gas flow become 

aE/& = -p(aH/at), (9) 

E = pHow, (10) 

+/at +p,(av/ax) = 0,  (11) 

(12) po(av/at) = - a(p +pHOH)px, 

P/Po = P/Po + T/To, (15) 

where a. is the linear absorption coefficient evaluated at the uniform condition 
To and pa. The introduction of a potential function $ such that 

v = a$/ax, p + p ~ o ~  = -poa$lat (16) 

ensures that the momentum equation (12) is satisfied. It is easy to show that 

where aT and A are the isothermal sound speed and Alfvhn wave speed respec- 
tively and are given by 

By elimination between the above equations, it can be shown that $ satisfies the 
equation 

= Po/Po, A2 = PH?i/Po. 

where ct = a: + A2, c$ = ai /y  + A2 and Bo represents the Boltzmann number, 
a dimensionless convection-radiation parameter defined by 

BO = Rypoao/(y- 1) BT:. 

Here, a, is the acoustic speed, given by a$ = ypo/po, and c, and cT are the magneto- 
acoustic speed and magneto-isothermal speed, which are the generalizations of 
the acoustic speed and isothermal speed. 
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4. Sinusoidal perturbations 
Substitution of a sinusoidal perturbation ~ J K  exp [i(wt - kx)] into (18 )  gives 

a characteristic equation, which may be solved for either w or k. The characteristic 
equation is a cubic in terms of w and a quadratic in k2. For the spatially damped 
problem treated by Helliwell & Nye (1969)) o is fixed because the magneto- 
acoustic waves are generated at a wall which is oscillating in position and tem- 
perature a t  the fixed frequency w. Expressed in terms of the dimensionless com- 
plex wave speed x = - (ic,/w) k, the quadratic characteristic equation for x2 yields 
the unequal roots 2': and xi. There occur two types of disturbances, corresponding 
to x1 and x2. One of them is essentially a magneto-acoustic wave and the other 
is a radiation-induced wave. 

For the decay problem treated in this section, k is fixed. It is convenient to  
work with the non-dimensional frequency cr = w/ika, and a propagation vector k 
in the direction of the initial sinusoidal disturbance. Substitution of 

qJccexp(-crka,t+ik.s) 

into (18 )  provides the following characteristic equation for cr: 

+ - r ~ a 2 + ( 1 + ~ 2 ) ~ - r < =  0, < =  ( i + ~ 2 y ) ,  (19 )  

where B2 = A2/a& a non-dimensional magnetic interaction parameter. The non- 
dimensional radiation parameter I? is given by 

the subscript ' approx ' signifying that the differential approximation has been 
used. The Bouguer number Bu = ao/k = a,h/2n is a dimensionless parameter 
which measures the opacity of the gas enclosed within a wavelength h of the 
sinusoidal disturbance. 

For a grey gas the exact expression for I' (see Olfe & DePlomb 1970) is 

I' = (16/Bo)  Bu[ 1 - Bu tan-l Bu-l] 

= (16/Bo)  K [ I  - K tan-l K-l], (21)  

where K = l/Bu is a non-dimensional wavenumber for the sinusoidal disturbance. 
In  this temporally damped case the Boltzmann number Bo and Bouguer 

number Bu are combined into a single radiation parameter r. This result was 
produced by the choice of sinusoidal profile for the initial disturbance. For a 
sinusoidal profile the energy absorbed at a point, as well as the energy emitted, is 
proportional to the local temperature perturbation at  the point (see, for example, 
Smith 1957; Golitsyn 1963). Therefore the decaying disturbance retains sinu- 
soidal shape and a change in Bu is equivalent to the corresponding change in B o  
which produces the same net radiation. 

Let us now examine the roots of (19). The coefficients of the cr terms are such 
that there is one real root cr, and a pair of complex conjugate roots cr* = cr,, & icr*, 

5-2 
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where 0;. and cri are real. In the limits of small and large values of the radiation 
parameter r the following values are obtained: 

The roots go, or and gi vary smoothly between the above limits for all values of 
B2 as shown in figure 1 for y = 5. 

We shall proceed to calculate the amplitudes of the terms involving the three 
decay frequencies, i.e. we shall carry out the complete solution for the decay of 
initial sinusoidal perturbations in temperature, velocity and pressure. 

The total solution for the decay of sinusoidal perturbations consists of the three 
exponential terms involving the three decay frequencies go, g+ and CT-, respec- 
tively. Accordingly, the solution for the potential Q is given by 

Q = Re [ (ao/k)  (Go e-cokaot + c + e-c+ kaot + c - e-c- kaot) e ik .  S ]  , (23) 

where Re denotes the real part. The complex non-dimensional amplitudes co 
and c+ are determined below in terms of the parameters I? and B2 and initial 
conditions. Substitution of (23) into (16) and (17) yields the relations for the 
perturbation velocity v and the perturbation pressure p ,  The relation for the 
perturbation temperature T can be obtained by substituting (23) in 

Thus, the relations for the perturbation velocity v in the k direction and the 
perturbation pressure p and temperature T are 

./ao = Re [i(coe-uok%t + C+e-c+kaot + c - e-c-kaot ) eik * I ,  s 

p / p  0 -  - Re [(yOe-uokkaot+~+e-u+kaot + y - e - c - k a o t  1 e ik-8  1 3  

TITo = Re [{boe-~o%t + b+e-c+kaot + b - e-c-kaot > e  ik.8 I ,  

(24) 

(25 )  

(26) 

where the amplitudes yo, y*, b, and b, are related to co and c+ by 

(27) I Yo = ? ( g o  + B2/go) co, Y* = 74g* + W*) c*3 

bo = ( F O  + &/go) co, b, = Y(W* + </a*) c*. 

For the initial conditions we consider the following sinusoidal disturbances : 

T(s ,  0) = Re [ (bo + b, + b-) eikeS] = Re [A, eik.s], 

v(s, O)/ao = Re [i(co + c+ +c-) eik.s] = Re [AZeik.S], (28) 

p ( s ,  O)/po = Re [ ( y , + ~ + + y - ) e ~ ~ . ~ ]  = Re 

where the amplitudes Aj may be complex to allow for arbitrary phase differences 
between initial sinusoidal disturbances. Equations (27) and (28) may be solved 
for the perturbation amplitudes, expressed in terms of the roots go, 0;. and ri. 
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FIGURE 1. Reel and imaginary decay frequencies against r; y = t. 

-, BZ = 0; -.-, BZ = 0.1; ---, B2 = I. 

The relative decay of sinusoidal disturbances is thus given by (24) ,  (25) ,  (26)  and 
(29a-g) expressed in terms of the roots a,, ar and IT,, which may be determined 
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from the cubic equation (19) for any value of the radiation parameter I' and the 
magnetic parameter B2. For the limiting values of cr,, cry and ai given in (22), the 
following solutions are obtained. 

For r @ 1, 

(A,+A,y-1-A3)sin(6iIca,t)+A2cos(6ikaot) 
B2i 

-- iyA2 sin (sika,t) +A,cos (S,ka,t) 
(I  + B2)* 

V 
'sin (S;ka,t)+A~eos(b:kaot)) e-';kaot] e ik .I) ,  ( 3 1 b )  

a0 

E+ Re { [4 exp ( - 8; ka,t) + {(A, - A,) cos (6; kaot) 
Po 

- iA,(y/@sin (b;ka,t)) e- 

In (30) and (31) the omitted terms are l?Aj and A#'. For the case of no initial 
velocity or pressure perturbations (30) and (31) represent constant-pressure and 
constant-density cooling, respectively. 

The constant-density solution (31) is to be expected since the gas does not have 
time to move during the cooling period for a sufficiently large cooling rate. The 
cooling time given by (31) is of order ill?, which is much shorter than the period 
of velocity and pressure oscillations. The period of these oscillations becomes 
comparable, for sufficiently large values of B2, with the cooling time. 

We observe that (30) gives a cooling time of order l/r, which is much longer 
than the period of velocity and pressure oscillations. In  the presence of the 
magnetic field, an initial temperature profile of amplitude A, induces velocity 
and pressure perturbations of order A,. These induced pressures and velocities 
are negligible in the non-conducting case. In  the present case the period of 
oscillations of velocity and pressure decreases as the magnetic field parameter B2 
is increased. 

is much less than unity. On the other hand I? can 
be of order unity in stellar atmospheres. Also, engineering applications or 

For planetary atmospheres 
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r 
FIGURE 2. Temperature decay coefficients against r; y = f .  

-, B2 = 0; -. -, BZ = 0.1; ---, B2 = I .  

laboratory experiments can involve high temperatures with corresponding l' 
values up to unity or greater. For intermediate values of I' all three roots a,, a+ 
and CT- will contribute to the temperature cooling. If an initial perturbation only 
in the temperature is considered the amplitude b, is given by (29a) with 
A, = A3 = 0 and the relative amplitudes of the terms containing a, are given by 

bJb0 = p r  -1- ipi, (32) 
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The temperature decay coefficients pr and pi as functions of the radiation para- 
meter r for B2 = 0,  0.1 and 1 are plotted in figure 2 with y = $. We notice in 
particular the behaviour of p, and pi in the ranges I? < 1 and I? 9 1. If B2 = 0, 
p,, pi-+ 0 in these ranges. If B2 + 0, p, and pi deviate from zero, and the devia- 
tion increases with increasing B2. 

For b, real the solutions ( 2 4 ) - ( 2 6 )  reduce to 

./ao = - c [e-"okUot + 2e-'7kaat(yr cos ( gi ka, t )  + yi sin ( vi ka, t ) ) ]  sin (k . s ) ,  

T/To = bo[e-uakUot + 2e-'rkaot{,8, cos ( cri ka t )  +pi sin ( cri ka, t ) } ]  cos (k . s) , 

p/po  = yo[e-rokaot+ 2e-'~kaot{h, cos (cika,t) + hi sin ( c~~k lca~ t ) } ]  cos (k. s ) ,  
(35) i 0 

where 

5. Radiative decay of planar step temperature profiles 
The sinusoidal perturbations of $ 4  may be superposed to yield solutions for 

the decay of any initial temperature, velocity and pressure profiles in a radiating 
gas. In this section we obtain a solution for the decay of planar step temperature 
profiles. 

Consider the decay of a planar step temperature profile, i.e. an initial tempera- 
ture perturbation which has the constant value ToA between &xo and is zero 
elsewhere. Superposition of the solutions (35) with k. s = kx gives 

J PZ!) = /om j q k ,  t )  cos (kx)dk, 
PO 

with T(k, t ) ,  E(k, t )  andp(k, t )  corresponding to the right-hand sides of (35) without 
the k . s factors. At the initial time T(k, 0) = b,( 1 + 2/3,). Application of Fourier 
cosine transform theory to the initial temperature profile yields the following 
expression for b,( k )  : 

b,(k) = (1 + 2Fr)-' F(k,  0) = (1 + 

(37)  

Substitution of b,(k) into (35) gives the following solutions expressed in terms of 
the non-dimensional time 7 = a,a,t and optical distances 7 = aox and 7, = aoxo: 

- 2 8  sin (kx,) - 
nk( 1 + 2pr)  * 
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The factors p,, Pi, yr, y i ,  Ar and A, are all defined earlier and are determined from 
the cubic equation (19) involving the parameters I' and B2. For a grey gas I' is 
given by ( 2 1 ) .  Equations (38)-(40) contain two independent parameters Bo 
and q0. We introduce another non-dimensional time 7 = (16/B0)7 into (38)-(40) 
which is proportional to the amount of energy emitted up to time t .  Reference to 
the integrals in (38)-(40) shows that we cannot combine Bo and r0 into a single 
parameter because the component sinusoidal functions are weighted differently 
for different times and positions. As a result the profile shapes depend on the 
optical width of the initial step. Also, the step profiles decay through a series of 
non-similar profiles, i.e. the shapes of the profiles may vary with time. This is in 
contrast with the pure sinusoidal profiles, which retain their original shape. 

6. Numerical solutions to the intemals and discussion 

Numerical evaluation of the integral in (38) on a computer for a grey gas has 
provided the temperature perturbation profiles shown in figures 3-5. Figure 3 
shows perturbation temperature profiles for the initial profile of optical thickness 
27, = 2 for Bo = 5, 7 = 5 and B2 = 0,0-1,  1 and 10. These profiles show that the 
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FIGURE 4. Temperaturepert~~rbation profiles: y = 5, B2 = 0.1, Bo = 0.2, 1 , 2 ,  5, 10, 25. 

(b)  27, = 10, F = 50. (a) 27, = 2 , 5  = 5. 

magnetic field keeps the gas hotter than the corresponding non-conducting gas. 
The stronger the magnetic field the hotter is the gas. We notice that the magnetic 
field causes slower temperature decay with time ?. This is clear from the profiles 
for B2 = 0 and I a t  times ;i = 5 and 10 shown in this figure. From the profiles for 
B2 = O , O . l ,  1 and 10 at ?: = 5 we note that the magnetic field makes the tempera- 
ture perturbations tend to approach constant-pressure cooling values. 

In figures 4 (a )  and (b) ,  we have shown perturbation temperature profiles for 
the profile widths 2~~ = 2 and 10, respectively. The temperature profiles are 
drawn for Bo = 0.2, I,  2 , 5 ,  10 and 25 for T = 5 in figure 4 (a).  The transition from 
the constant-pressure cooling to constant-density cooling can be noticed from 
the profiles for Bo = 25 and 0.2 in figure 4 (a),  i.e. for large and small Bo values. 
A gas characterized by intermediate Bo values will progress in time from 
constant-density cooling to constant-pressure cooling. We have shown the 
profiles for Bo = 0.2, 1, 2 , 5  and I0 at ?: = 50 in figure 4 ( b ) .  Comparison of figures 
4 ( a )  and (b )  shows that increased absorption results in a slower temperature 
decay with time ;T. The profiles become more continuous as the gas in the region 
7 > qo gets heated as time progresses (see figure 4 (b)).  
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FIGURES 5(a) and (b ) .  For legend see following page. 
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FIGURE 5 .  (a )  Temperature, ( b )  velocity and ( c )  pressure perturbation profilm: 2v0 = 2, 
y = 5, Bo = 5. -, BZ = 0.1; -.-, B2 = 1;  -*.-, B2 z 10. 

Decay features for intermediate Boltzmann nunibers 

The integrals appearing in (38)-( 40) are evaluated for an intermediate Boltzmann 
number Bo = 5 and T,, = I .  Figure 5 (a )  shows the decay of initial step tempera- 
ture perturbations, the development and decay of the velocity and pressure 
perturbations being shown in figures 5 ( b )  and (c) respectively. The aim is to illu- 
strate the decay of perturbations and the transition from a constant-density 
cooling process to a constant-pressure process in the presence of the magnetic 
field. For this purpose, we fixed B2 = 0.1 and plotted the perturbation profiles for 
various 5 in figure 5 .  The next step is toinvestigate the effects of increased strength 
of the magnetic field. To illustrate the strong magnetic field effects, we have also 
shown the profiles for B2 = 1 a t  7 = 5 and for B2 = 10 a t  ;i = 3 in figure 5 .  

The perturbation profiles in figure 5 make it clear that the cooling process 
proceeds in a manner similar to  that in the non-magnetic case. Olfe & DePlomb 
(1970) observe that the cooling proceeds with negligible motion and constant 
density a t  small times and dies out asymptotically a t  constant pressure a t  large 
times. At intermediate times gasdynamic waves appear travelling inwards and 
outwards from the temperature discontinuity. These modify the cooling con- 
siderably from what it would be if the entire decay were a t  constant density, 
with no induced velocities. 

Even in the presence of the magnetic field, the cooling proceeds with negligible 
motion and constant density a t  small times and dies out a t  constant pressure a t  
large times. At intermediate times gasdynamic waves travel with magneto- 
acoustic speeds inwards and outwards from the original temperature discontinuity 
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and modify the cooling process. We proceed to describe this cooling process 
and also understand how the strength of the magnetic field affects the above 
process with the help of the profiles in figure 5. 

At  small times the cooling proceeds with constant density and negligible 
motion as velocity perturbations are found to be small. We notice that the pres- 
sure perturbations vary rapidly in the vicinity of the temperature discontinuity 
(see the profiles in figure 5 (c) for B2 = 0.1, = 0.5, 1 ,3) .  These pressure perturba- 
tions are due to heating in the region 7 > qo and cooling in the region n < T~ 
occurring at  early times (figure 5 (a) ) .  (The radiative transfer heats up the region 
7 > T,, more in the presence of the magnetic field than in its absence and thus the 
temperature profiles in figure 5 (a)  look continuous even at  early times.) These 
large pressure perturbations produce negative velocity pulses near 7 = 0 (see the 
profiles for B2 = 0.1, T = 0.5, 1, 3 in figure 5 ( b ) ) .  As time progresses the pressure 
and velocity perturbations spread out to further distances from qo. Then, heating 
and cooling waves produced by the gas motion travel inwards and outwards 
from the temperature discontinuity respectively with magneto-acoustic speed. 
As time progresses further the pressure pulses reach 7 = 0. The pressure increases 
near 7 = 0 in the region 7 < qo owing to the accumulation of gas and it decreases 
in the region qo < 7 < 27, owing to loss of mass (see the profile for B2 = 0.1, 
7 = 10 in figure 5 (c)). These pressure changes are accompanied by corresponding 
velocity changes. The inward flow at 7 = 0 is reduced and there is appreciable 
inward flow away from 7 = 0 (see the profile for B2 = O - l , ? ?  = 10 in figure 5 ( b ) ) .  
The reduction in the negative pressure perturbation in the core (near 7 = 0) 
results in a reflected temperature wave originating from the far discontinuity 
7 = - v0 consisting of temperature perturbations closer to constant-pressure 
values (see the profile for B2 = 0.1, T = 10 in figure 5 (a)). At later times the 
velocity and pressure perturbations decay to zero (see the profiles for B2 = 0.1, 
7 = 25 in figures 5 (b ) ,  ( c ) ) .  Then the temperature perturbations decay with nearly 
constant-pressure values (see the profiles for B2 = 0.1, 7 = 25 in figure 5 (a) ) .  

As the cooling and heating waves produced by the gas motion travel with the 
velocity c,, they reach 7 = 0 earlier in the presence of a stronger magnetic field. 
As a result, the pressure increase near 7 = 0 and the pressure decrease in the 
region q0 < 7 < 2v0 take place earlier. This can be noticed in figure 5 ( c ) ,  where the 
increase in pressure near 7 = 0 and the decrease in pressure away from 7 = 0 
occur at about the times T = 10, 5 and 3 for B2 = 0.1, I and 10 respectively. 
Correspondingly we also notice in figure 5 (b) that appreciable reduction in the 
inward velocity in the core and increase of negative velocity at  large distances 
from 7 = 0 occur at times 7 = 10, 5 and 3 for the respective values of B2 = 0.1, I 
and 10. Thereafter, the temperature perturbations start decaying at nearly 
constant pressure (see the profiles for B2 = 1, T = 5 and B2 = 10, 7 = 3 in 
figure 5 (a ) )  

Therefore, we conclude that the temperature perturbations attain constant- 
pressure cooling values earlier, i.e. in the presence of magnetic field the transition 
from a constant-density process to a constant-pressure process is more rapid. This 
is because the magnetic field causes faster decay of velocity and pressure 
perturbations. 
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FIGURE 6. Velocity (solid line) and pressure (broken line) perturbation profiles with 

2% = 2, 'i = 5 ,  B2 = 0.1 and y = +, for Bo = 1, 2 ,  5 .  

Since the waves generated at  the temperature discontinuities travel at the 
magneto-acoustic speed, they will reach the profile centre at time 

?* = (16/B0) r,/( I f B2)*. 

This expression for 7* also shows that the transition time decreases as B2 is 
increased. The magnetic field hastens only the above transition of the cooling 
process and not the entire decay process. In fact, as was observed in the first 
paragraph of this section, the cooling time is longer than in the non-magnetic 
case and becomes progressively longer with the increasing strength of the 
magnetic field. 

The induced non-dimensional velocity and pressure perturbations are appreci- 
able for Bo = 5 as shown in figures 5 ( b )  and ( c ) .  In  figure 6 ,  the velocity and pres- 
sure perturbation profiles for Bo = 1, 2, and 5,  B2 = 0.1, qo = I and 7 = 5 are 
drawn. These perturbations increase with decreasing Bo and decay over progres- 
sively longer times as Bo decreases. For example, the velocity and pressure 
perturbations for Bo = 1 and 2 spread out further as time progresses before 
decreasing to zero. However, as observed earlier, the decay of these perturbations 
to zero depends on the strength of the magnetic field, which reduces their decay 
time. 

In the present work the specific calculations have been carried out for the case 
of no initial perturbations in pressure and velocity. However, the development of 
magneto-acoustic waves and the transition from constant-density to constant- 
pressure cooling should be features of most cooling processes even when initial 
pressure and velocity perturbations exist. 
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